Abstract
In this Letter, we provide an experimental demonstration of amplitude-dependent dispersion tuning of surface acoustic waves interacting with nonlinear resonators. Leveraging the similarity between the dispersion properties of plate edge waves and surface waves propagating in a semi-infinite medium, we use a setup consisting of a plate with a periodic arrangement of bead-magnet resonators along one of its edges. Nonlinear contact between the ferromagnetic beads and magnets is exploited to realize nonlinear local resonance effects. First, we experimentally demonstrate the nonlinear softening nature and amplitude-dependent dynamics of a single bead-magnet resonator on both rigid and compliant substrates. Next, the dispersion properties of the system in the linear regime are investigated. Finally, we demonstrate how the interplay of nonlinear local resonances with plate edge waves gives rise to amplitude-dependent dispersion properties. The findings will inform the design of more versatile surface acoustic wave devices that can passively adapt to loading conditions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.