Abstract

We report a rigorous study of the spectroscopic, laser and thermal properties of a 10at.% and a 15at.% Yb:LuAG crystals. A loss mechanism is observed in the medium with the highest doping, pumped at 936 nm and 968 nm, as a sharp and dramatic decrease of the laser output power is measured at higher excitation densities. The nonlinearity of the loss mechanism is confirmed by the fluorescence data and by the thermal lens. In particular, the dioptric power of the thermal lens acquired at different pumping levels shows a strong deviation of the expected linear trend. Here we report the influence of both the concentration and the ion excitation density of Yb3+ on the output powers, the slope efficiencies and the thresholds. Conversely excellent results are achieved with the 10at.%, which does not show any loss mechanism as at 1046 nm it delivers 11.8 W with a slope efficiency of η(s) = 82%, which is, to the best of our knowledge, the highest value reported in literature for this material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call