Abstract
Gravel augmentation is a river restoration technique applied to channels downstream of dams where size‐selective transport and lack of gravel resupply have created armored, relatively immobile channel beds. Augmentation sediment pulses rely on flow releases to move the material downstream and create conditions conducive to salmon spawning and rearing. Yet how sediment pulses respond to flow releases is often unknown. Here we explore how three types of dam releases (constant flow, small hydrograph, and large hydrograph) impact sediment transport and pulse behavior (translation and dispersion) in a channel with forced bar‐pool morphology. We use the term sediment “pulse” generically to refer to the sediment introduced to the channel, the zone of pronounced bed material transport that it causes, and the sediment wave that may form in the channel from the additional sediment supply, which can include input sediment and bed material. In our experiments, we held the volume of water released constant, which is equivalent to holding the cost of purchasing a water volume constant in a stream restoration project. The sediment pulses had the same grain size as the bed material in the channel. We found that a constant flow 60% greater than the discharge required to initiate sediment motion caused a mixture of translation and dispersion of the sediment pulse. A broad crested hydrograph with a peak flow 2.5 times the discharge required for entrainment caused pulse dispersion, while a more peaked hydrograph >3 times the entrainment threshold discharge caused pulse dispersion with some translation. The hydrographs produced a well‐defined clockwise hysteresis effecting sediment transport, as is often observed for fine‐sediment transport and transport‐limited gravel bed rivers. The results imply a rational basis for design of water releases associated with gravel augmentation that is directly linked to the desired sediment behavior.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.