Abstract

Pr3+/Yb3+ doped materials have been widely reported as quantum-cutting materials in recent times. However, the question of the energy transfer mechanism in the Pr3+/Yb3+ pair in light of the quantum-cutting phenomenon still remains unanswered. In view of that, we explored a series of Pr3+/Yb3+ co-doped low phonon fluorotellurite glass systems to estimate the probability of different energy transfer mechanisms. Indeed, a novel and simple way to predict the probability of the proper energy transfer mechanism in the Pr3+/Yb3+ pair is possible by considering the donor Pr3+ ion emission intensities and the relative ratio dependence in the presence of acceptor Yb3+ ions. Moreover, the observed results are very much in accordance with other estimated results that support the quantum-cutting phenomena in Pr3+/Yb3+ pairs, such as sub-linear power dependence of Yb3+ NIR emission upon visible ∼450 nm laser excitation, integrated area of the donor Pr3+ ion's visible excitation spectrum recorded by monitoring the acceptor Yb3+ ion's NIR emission, and the experimentally obtained absolute quantum yield values using an integrating sphere setup. Our results give a simple way of estimating the probability of an energy transfer mechanism and the factors to be considered, particularly for the Pr3+/Yb3+ pair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.