Abstract

Many macroscopic dynamical phenomena, for example in hydrodynamics and oscillatory chemical reactions, have been observed to display erratic or random time evolution, in spite of the deterministic character of their dynamics—a phenomenon known as macroscopic chaos1,2,3,4,5. On the other hand, it has been long supposed that the existence of chaotic behaviour in the microscopic motions of atoms and molecules in fluids or solids is responsible for their equilibrium and non-equilibrium properties. But this hypothesis of microscopic chaos has never been verified experimentally. Chaotic behaviour of a system is characterized by the existence of positive Lyapunov exponents, which determine the rate of exponential separation of very close trajectories in the phase space of the system6. Positive Lyapunov exponents indicate that the microscopic dynamics of the system are very sensitive to its initial state, which, in turn, indicates that the dynamics are chaotic; a small change in initial conditions will lead to a large change in the microscopic motion. Here we report direct experimental evidence for microscopic chaos in fluid systems, obtained by the observation of brownian motion of a colloidal particle suspended in water. We find a positive lower bound on the sum of positive Lyapunov exponents of the system composed of the brownian particle and the surrounding fluid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.