Abstract

Carbon isotope fractionation in metabolic processes following carboxylation of ribulose-1,5-bisphosphate (RuBP) is not as well described as the discrimination during photosynthetic CO(2) fixation. However, post-carboxylation fractionation can influence the diel variation of delta(13)C of leaf-exported organic matter and can cause inter-organ differences in delta(13)C. To obtain a more mechanistic understanding of post-carboxylation modification of the isotopic signal as governed by physiological and environmental controls, we combined the modelling approach of Tcherkez et al., which describes the isotopic fractionation in primary metabolism with the experimental determination of delta(13)C in leaf and phloem sap and root carbon pools during a full diel course. There was a strong diel variation of leaf water-soluble organic matter and phloem sap sugars with relatively (13)C depleted carbon produced and exported during the day and enriched carbon during the night. The isotopic modelling approach reproduces the experimentally determined day-night differences in delta(13)C of leaf-exported carbon in Ricinus communis. These findings support the idea that patterns of transitory starch accumulation and remobilization govern the diel rhythm of delta(13)C in organic matter exported by leaves. Integrated over the whole 24 h day, leaf-exported carbon was enriched in (13)C as compared with the primary assimilates. This may contribute to the well-known--yet poorly explained--relative (13)C depletion of autotrophic organs compared with other plant parts. We thus emphasize the need to consider post-carboxylation fractionations for studies that use delta(13)C for assessing environmental effects like water availability on ratio of mole fractions of CO(2) inside and outside the leaf (e.g. tree ring studies), or for partitioning of CO(2) fluxes at the ecosystem level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.