Abstract

In a recent paper we used a phase-field model of solidification in deeply undercooled pure melts to show that a kinetic instability could result in dendrite tip splitting, and we speculated that such tip splitting could give rise to the phenomenon of spontaneous grain refinement. Here we present evidence, from the as-solidified microstructure of deeply undercooled ultrahigh purity Cu, of what appears to be dendrite tip splitting during recalescence. The significance of this finding in a nongrain refined sample is discussed in terms of the current theories for spontaneous grain refinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.