Abstract

Understanding the inherent damping mechanisms of floor vibrations has become a matter of increasing importance following the development of new composite floor layouts and increased span. The present study focuses on the evaluation of material damping in timber beam specimens with dimensions that are typical of common timber floor structures. Using the impact test method, 11 solid wood beams and 11 glulam beams made out of Norway Spruce (Picea abies) were subjected to flexural vibrations. The tests involved different spans and orientations. A total of 420 material damping evaluations were performed, and the results are presented as mean values for each configuration along with important statistical indicators to quantify their reliability. The consistency of the experimental method was validated with respect to repeatability and reproducibility. General trends found an increasing damping ratio for higher modes, shorter spans, and edgewise orientations. It is concluded from the results that material damping of timber beams of structural dimensions is governed by shear deformation, which can be expressed more conveniently with respect to the specific mode shape and its derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.