Abstract

Thermal models are used to predict temperature distributions of heated tissues during thermal therapies. Recent interest in short duration high temperature therapeutic procedures necessitates the accurate modelling of transient temperature profiles in heated tissues. Blood flow plays an important role in tissue heat transfer and the resultant temperature distribution. This work examines the transient predictions of two simple mathematical models of heat transfer by blood flow (the bioheat transfer equation model and the effective thermal conductivity equation model) and compares their predictions to measured transient temperature data. Large differences between the two models are predicted in the tissue temperature distribution as a function of blood flow for a short heat pulse. In the experiments a hot water needle, above ambient, delivered a 20 s heating pulse to an excised fixed porcine kidney that was used as a flow model. Temperature profiles of a thermocouple that primarily traversed the kidney cortex were examined. Kidney locations with large vessels were avoided in the temperature profile analysis by examination of the vessel geometry using high resolution computed tomography angiography and the detection of the characteristic large vessel localized cooling or heating patterns in steady-state temperature profiles. It was found that for regions without large vessels, predictions of the Pennes bioheat transfer equation were in much better agreement with the experimental data when compared to predictions of the scalar effective thermal conductivity equation model. For example, at a location mm away from the source, the measured delay time was s compared to predictions of 9.4 s and 5.4 s of the BHTE and ETCE models, respectively. However, for the majority of measured locations, localized cooling and heating effects were detected close to large vessels when the kidney was perfused. Finally, it is shown that increasing flow in regions without large vessels minimally perturbs temperature profiles for short exposure times; regions with large vessels still have a significant effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.