Abstract

In link prediction, the goal is to predict which links will appear in the future of an evolving network. To estimate the performance of these models in a supervised machine learning model, disjoint and independent train and test sets are needed. However, objects in a real-world network are inherently related to each other. Therefore, it is far from trivial to separate candidate links into these disjoint sets.Here we characterize and empirically investigate the two dominant approaches from the literature for creating separate train and test sets in link prediction, referred to as random and temporal splits. Comparing the performance of these two approaches on several large temporal network datasets, we find evidence that random splits may result in too optimistic results, whereas a temporal split may give a more fair and realistic indication of performance. Results appear robust to the selection of temporal intervals. These findings will be of interest to researchers that employ link prediction or other machine learning tasks in networks.KeywordsLink predictionPerformance estimationMachine learning

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.