Abstract

This study will present an experimental evaluation of the variable-feedrate intelligent segmentation (VFIS) method described by Mayor and Sodemann (2008, “Intelligent Tool-Path Segmentation for Improved Stability and Reduced Machining Time in Micromilling,” ASME J. Manuf. Sci. Eng., 130(3), p. 031121). The apparatus for the tests will be identified and the approach to the testing procedure will be laid out, including the means of evaluation of the method. A detailed explanation is then given for the choice of process parameters. This is followed by the introduction of the β parameter as an additional factor in the VFIS implementation. Results are presented from cutting tests. The first set of test results presented is from a complete set of evaluation tests performed on sine wave geometries. The second set is an evaluation of the fan and airfoil shapes used previously in the numerical simulations of the VFIS method. It is found that the VFIS method is able to successfully constrain geometric error to within specified bounds in most cases. The cutting time for the VFIS method shows as much as 53% reduction relative to the nonuniform rational B-spline-based trajectory generation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.