Abstract

A filament stretching rheometer was used for measuring the startup of uni-axial elongational flow followed by reversed bi-axial flow, both with a constant elongational strain rate. A narrow molecular mass distribution linear polyisoprene with a molecular weight of 483 kg/mole was subjected to the flow in the non-linear flow regime. This has allowed highly elastic measurements within the limit of pure orientational stress, as the time of the flow was considerably smaller than the Rouse time. A Doi–Edwards [J. Chem. Soc., Faraday Trans. 2 74, 1818–1832 (1978)] type of constitutive model with the assumption of pure configurational stress was accurately able to predict the startup as well as the reversed flow behavior. This confirms that this commonly used theoretical picture for the flow of polymeric liquids is a correct physical principle to apply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.