Abstract

The objective of this research is to experimentally evaluate the lubrication performances of different nanofluids in milling titanium alloy Ti-6Al-4V. Six types of nanofluids, namely, Al2O3, SiO2, MoS2, CNTs, SiC, and graphite, were selected. Cottonseed oil was used as the base oil. The lubrication performance was investigated in terms of milling force, surface roughness, and morphology of workpiece surface. Experimental results demonstrated that the Al2O3 nanoparticle obtained the minimal milling force (Fx = 277.5 N, Fy = 88.3 N), followed by the SiO2 nanoparticle (Fx = 283.6 N, Fy = 86.5 N). The surface roughness obtained by the Al2O3 nanofluid was the minimum (Ra = 0.594 μm), whereas it was the maximum by using minimum quantity lubrication (Ra = 1.772 μm). The surface roughness of the six nanofluids was described by the following order: Al2O3 < SiO2 < MoS2 < CNTs < graphite < SiC. The workpiece surface morphology was the best for Al2O3 and SiO2. The viscosity of the nanofluids was also analyzed. Spherical Al2O3 and SiO2 nanoparticles improved the lubrication effect of base oil mostly and were more suitable as environment-friendly additives for the base oil compared with the others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.