Abstract

Glycopeptide antibiotics are still in demand in clinical practice for treating infections caused by resistant gram-positive pathogens; however, their use is limited due to severe adverse reactions. Their predominant types of side effects are immunoglobulin E-mediated or nonmediated hypersensitivity reactions. Therefore, the development of new glycopeptide antibiotics with improved toxicity profiles remains an important objective in advancing modern antimicrobial agents. We investigated a new eremomycin aminoalkylamide flavancin, its anaphylactogenic properties, influence on histamine levels in blood plasma, pseudoallergic inflammatory reaction on concanavalin A and the change in the amount of flavancin in the blood plasma after administration. It has been shown that flavancin does not demonstrate anaphylactogenic properties. The injection of flavancin resulted in a level of histamine in the blood three times lower than that caused by vancomycin. The therapeutic dose of vancomycin led to a statistically significant increase in the concanavalin A response index compared to flavancin (54% versus 3.7%). Thus, flavancin does not cause a pseudo-allergic reaction. The rapid decrease in flavancin concentration in the blood and the low levels of histamine in the plasma lead us to assume that any pseudoallergic reactions resulting from flavancin application, if they do occur in clinical practice, will be significantly less compared to the use of vancomycin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.