Abstract

Adsorption equilibrium, thermodynamics, and kinetics of CH4, N2, and CO2 were investigated by volumetric-chromatographic and inverse gas chromatographic (IGC) methods on the Al-BDC MOF. The binary adsorption data from the volumetric-chromatographic experiments represents that the Al-BDC MOF has a high CO2/CH4 selectivity ca. 11 and a CH4/N2 selectivity ca. 4.3 at 303 K, and appears to be a good candidate for the CH4 separation. The initial adsorption heats of CH4, N2, and CO2 on the Al-BDC MOF were determined to be 15.3, 11.5, and 32.2 kJmol−1 by IGC method, respectively. Moreover, the micropore diffusivities of N2, CH4 and CO2 in the Al-BDC MOF at 303 K were also estimated to be 1.58 × 10−7 cm2/s, 7.04 × 10−8 cm2/s, and 3.95 × 10−9 cm2/s, respectively. The results indicate that micropores play a crucial role in the adsorptive separation of the CH4/N2 and CH4/CO2 mixtures, and the IGC method is a validity manner to estimate the thermodynamic and kinetic parameters of MOF adsorbents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.