Abstract
An experimental study of hydrodynamic and mass transfer processes was carried out in an absorption column of 0.252 m diameter and 3.5 m of packed bed height developed by Mexican National Institute of Nuclear Research (ININby its acronym in Spanish) of stainless steel gauze corrugated sheet packing by means of SO2-air-water systems. The experiments results include pressure drop, flows capacity, liquid hold-up, SO2composition, and global mass transfer coefficient and mass transfer unit height by mass transfer generalized performance model in order to know the relationship between two-phase countercurrent flow and the geometry of packed bed. Experimental results at loading regimen are reported as well as model predictions. The average deviation between the measured values and the predicted values is±5% of 48-data-point absorption test. The development of structured packing has allowed greater efficiency of absorption and lower pressure drop to reduce energy consumption. In practice, the designs of equipment containing structured packings are based on approximations of manufacturer recommendations.
Highlights
IntroductionThe development of structured packing has allowed greater efficiency of absorption and lower pressure drop to reduce energy consumption [2]
The modelling and study of the beds of structured packing, geometrically ordered, have played scientific and technological challenges, motivated by the urgent need to increase the separation efficiency of separation processes and efficient use of energy and in compliance with environmental legislation [1].The development of structured packing has allowed greater efficiency of absorption and lower pressure drop to reduce energy consumption [2]
The designs of equipment containing structured packings are based on approximations of manufacturer recommendations
Summary
The development of structured packing has allowed greater efficiency of absorption and lower pressure drop to reduce energy consumption [2]. The designs of equipment containing structured packings are based on approximations of manufacturer recommendations. Conventional structured packing offers the highest efficiency versus other devices. It is less resistant to particulate fouling versus grid style packing and there is less experience with conventional packing in this particular service. This is considered a viable option but requires a design that mitigates the potential for particulate fouling [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.