Abstract

Nitric oxide laser-induced-fluorescence (NO-LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high-pressure flames (1–60 bar). This work builds on previous research that identified interference LIF from O 2 and CO 2 in high-pressure flames and optimized the choice of excitation strategies as a function of application conditions. In this study, design rules are presented to optimize the LIF detection wavelengths for quantitative 2-D NO-LIF measurements over a wide range of pressures (1–60 bar) and temperatures. Simultaneous detection of LIF in multiple wavelength regions enables correction of the NO signal for interference from O 2 and CO 2 and allows simultaneous imaging of all three species. New experiments of wavelength-resolved 1-D LIF in slightly lean ( ϕ = 0.9) and slightly rich ( ϕ = 1.1) methane/air flames are used to evaluate the design rules and estimate the NO detection limits for a wide range of flame conditions. The quantitative 2-D measurements of NO in the burnt gas are compared with model calculations (using GRI-Mech 3.0) versus pressure for slightly lean and slightly rich flames. The discussions and demonstrations reported in this study provide a practical guideline for application of instantaneous 1-D or 2-D NO-LIF imaging strategies in high-pressure combustion systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.