Abstract

3D ultrasound computer tomography (USCT) requires a large number of transducers approx. two orders of magnitude larger than in a 2D system. Technical feasibility limits the number of transducer positions to a much smaller number resulting in a sparse aperture and causing artifacts due to grating lobe effects in the images. Usually, grating lobes are suppressed by using a non-sparse geometry. Thus, there is no quantitative estimation method available how much the image contrast is degraded when a sparse aperture is applied and how much the contrast is improved when adding more transducers, changing the overall aperture or the object. In this paper the effect of the grating lobes on the image quality was analyzed for a spherical, a hemispherical and the semi-ellipsoidal USCT aperture: The background noise due to grating lobes is very similar for the three apertures and mainly influenced by the sparseness and the imaged object. A model for noise reduction was fitted to simulated and experimental data, and can be used to predict the peak-signal-to-noise- ratio for a given object and number of aperture positions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call