Abstract
Noisy Intermediate-Scale Quantum (NISQ) computers are being increasingly used for executing early-stage quantum programs to establish the practical realizability of existing quantum algorithms. These quantum programs have uses cases in the realm of high-performance computing ranging from molecular chemistry and physics simulations to addressing NP-complete optimization problems. However, NISQ devices are prone to multiple types of errors, which affect the fidelity and reproducibility of the program execution. As the technology is still primitive, our understanding of these quantum machines and their error characteristics is limited. To bridge that understanding gap, this is the first work to provide a systematic and rich experimental evaluation of IBM Quantum Experience (QX) quantum computers of different scales and topologies. Our experimental evaluation uncovers multiple important and interesting aspects of benchmarking and evaluating quantum program on NISQ machines. We have open-sourced our experimental framework and dataset to help accelerate the evaluation of quantum computing systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.