Abstract

This study investigated how leaching affects compressibility behavior of marine clay and its strain rate dependency based on laboratory tests using three pairs of specimens. Each pair of specimens consisted of leached and unleached samples with identical geotechnical properties except soil salinity. The behavior characteristics of the leached and unleached specimens were evaluated using several series of constant rate-of-strain (CRS) tests with differing strain rates. The results revealed that the compressibility of leached clay increased as its salinity decreased. However, void ratio, Atterberg limits, and preconsolidation pressure in leached samples were lower than those in unleached clay. The increased compressibility and decreased preconsolidation pressure may be induced from a weakening of the interparticle bonds in the leached soil skeleton. The CRS test results with differing strain rates revealed that higher strain rates corresponded with higher levels of effective stress and higher apparent preconsolidation pressure in both leached and unleached clays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call