Abstract

Blast loading varies based on the location of the explosion. Furthermore, blast loading can be classified into unconfined explosions and confined explosions. Many studies have evaluated blast resistance performance based on unconfined explosions, focusing on military applications. However, there is a paucity of studies considering confined explosions. Given that confined explosions are significantly different from unconfined explosions, full-scale field experiments are necessary for the development of numerical models. Therefore, in this study, the performance of blast resistance panels was evaluated as a method for reducing explosion pressure in facilities such as underground ammunition storage. Two structures were manufactured using normal-strength and high-strength concrete, and 5.9 kg of TNT was blasted internally. The experimental results confirmed that the maximum acceleration could be reduced by 28.87% and 61.65% in the normal-strength and high-strength concrete structures, respectively, when using a blast resistance panel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call