Abstract

Due to the lower opacity and translucency of many core materials, bilayered ceramic crowns were introduced to obtain sufficient veneer support and to improve aesthetics. Interfaces can have significant influence on the mechanical performance of layered structures. Veneer chipping and zirconia frameworks fractures are critical issues in all-ceramic restorations. The objective of this study was to assess failure analysis of bilayered all-ceramic molar crowns, evidenced by different type of fractures. Experiments were conducted on a right first maxillary molar. Bilayered all-ceramic crowns were obtained with a 0.5 mm thick zirconia milled framework and veneered with hot-pressed ceramics. The specimens were tested at compressive load until failure. The typical macroscopic crack pattern of all samples showed that crack propagation resulted in more broken pieces with sharp edges. Ceramic materials show considerable variation in strength due to their extreme sensitivity to cracks. Understanding the fracture behavior of dental ceramics and its relation to different materials and restorations is important from a clinical point of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.