Abstract

There is evidence that Additive Manufacturing (AM) plays a crucial role in the fourth industrial revolution. The design freedom provided by this technology is disrupting limits and rules from the past, enabling engineers to produce new products that are otherwise unfeasible. Recent developments in the field of Selective Laser Melting (SLM) have led to a renewed interest in lattice structures that can be produced non-stochastically in previously unfeasible dimensional scales. One of the primary applications is aerospace engineering where the need for light weights and performance is urgent to reduce the carbon footprint of civil transport around the globe. Of particular concern is fatigue strength. Being able to predict fatigue life in both LCF (Low Cycle Fatigue) and HCF (High Cycle Fatigue) is crucial for a safe and reliable design in aerospace systems and structures. In the present work, an experimental evaluation of compressive–compressive fatigue behavior has been performed to evaluate the fatigue curves of different cells, varying sizes and relative densities. A Design of Experiment (DOE) approach has been adopted in order to maximize the information extractable in a reliable form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call