Abstract
Northern corn leaf blight (NLB) caused by Setosphaeria turcica (Luttrell) Leonard & Suggs is a severe foliar disease in maize. Resistance to NLB is complexly inherited and controlled by several quantitative trait loci (QTL) distributed across the genome. Phenotype and DNA marker-based selection for resistance to NLB is expected to be effective. Hence, an investigation was carried out to predict the genetic value of selection candidates for resistance to NLB and compare the accuracies of genomic prediction in two F2:3 populations of two crosses (CM212 × MAI172; CM202 × SKV50) derived from contrasting parents. Linkage analysis using 297 polymorphic SNPs in population-1 and 290 polymorphic SNPs in population-2 revealed ten linkage groups spanning 3623.88cM and 4261.92cM with an average distance of 12.40cM and 14.9cM in population-1 and population-2, respectively. Location-wise and pooled data across locations identified common QTLs on linkage groups 1 and 6 in population-1 and 3 and 8 in population-2. The prediction accuracy of the QTL mapping (9.92 and 9.10 for population-1 and population-2, respectively) was based on only a few markers, which explained higher percent phenotypic variation. The prediction accuracies of the genomic estimated breeding values in the present investigation were relatively low in population-1 (0.24 to 0.26) and population-2 (0.29-0.32) compared to the expected accuracies. This could be due to fewer polymorphic markers and a small training/population size. Though the GS prediction accuracies were relatively low, they were significantly higher than QTL mapping, which promises better genetic gain per cycle. The resistant progenies from both populations were advanced to derive inbred lines and crossed with four different testers in line × tester mating design to test for their combining ability and effectiveness of genomic selection. High overall general combining ability was exhibited by 21 inbred lines. Among F1s, 48% were assigned high overall specific combining ability status. Out of the 136 single crosses, seven recorded significant positive standard heterosis over the best check for grain yield. Twenty-five inbreds with high GEBVs were crossed with four testers to obtain 100 F1s and evaluated for their response to NLB. The majority of hybrids displayed moderate to resistant reaction to NLB either in combination with susceptible or resistant testers indicating the effectiveness of selection based on high GEBVs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.