Abstract
Different from vehicle engines, Diesel Particulate Filter (DPF) inactivation is an unavoidable issue for low-speed marine diesel engines fueled with Heavy Fuel Oil (HFO). This paper introduced a sulfur resisting material in Silicon Carbide (SiC)-DPF to improve DPF performance. The results of bench-scale experiments showed that the Balance Point Temperature of the modified DPF module was 300°C and DPF modules had a good filtration performance, with Particulate Matters (PMs) residual being less than 0.6 g per cycle. In pilot-scale tests, PMs emissions of unit power decreased with engine load going up, filtration efficiency of nucleation mode PMs being only 36% under 100% load, while DPF still had a good performance in accumulation mode PMs control, being 94.2% under the same load. DPF modules showed excellent regeneration durability in the 205h endurance test, with a regeneration period of 1.5-2h under 380°C. There was no obvious degeneration in the DPF module structure, with no cracks or breakage. Besides, the DPF module could also control gaseous emissions, total emissions decreased by 10.53% for NO and 57.19% for CO, respectively. The results suggested that introducing sulfur-resisting material in DPF could greatly improve the DPF performance of low-speed marine diesel engines fueled with HFO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.