Abstract

Introduction Evaluation of the delivered dose of externally wedged photon beams by external diode dosimeters during the treatment process requires the estimation of exit surface dose correction factors in various wedge angles and field sizes. Materials and Methods A system of absorbed dose evaluation, using p-type diode dosimeters placed on the exit surface of a phantom, was characterized for externally wedged photons with the maximum square field size. The values of wedge correction factor on the exit surface of the polystyrene phantom were determined for 60Co and 6 MV photons. Then, the wedge correction factors were estimated at desirable depths. Results Based on the findings, the deviation of off-axis wedge correction factors of the exit surface wedged fields from the central axis factor may be as large as ±10% at the evaluated depths. The results showed that the absorbed dose at each depth of patient tissue could be estimated by applying an accurate exit wedge correction factor for that particular depth, with negligible probable errors (below 1.5%). Conclusion In case positioning a diode dosimeter on the patient’s entrance surface of a phantom of patients is troublesome, the diode dosimeter can be placed on the exit surface in order to evaluate the absorbed dose for externally wedged photons. Based on the findings, exit dose correction factors for wedged beams cannot be discarded; in fact, these factors are variable at different directions of externally wedged beams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.