Abstract
The objective of the paper was to validate non-linear parametric models of computerised tomography point spread function (PSF), to investigate the role of model parameters and to verify the effect of different imaging conditions on estimated parameters. These models were then to be used experimentally to estimate the variation of PSF shape within the field of view of a scanner. Two parametric models of the PSF are presented. The Gaussian model is appropriate when PSF values are positive, and the damped cosine model can account for negative values. These models are non-linear and fully two-dimensional and do not assume radial symmetry. The models were fitted to images of a point source. The models accounted for over 99% of the variance in the PSF signal. Errors in modulation transfer function were limited to 5% when the appropriate model was selected. The difference in the blurring characteristics of three image reconstruction filters was well quantified by shape parameters, and position parameters located the PSF with subpixel accuracy. With a point source located 50mm directly above the centre of the field of view, the PSF was found to be anisotropic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Medical & Biological Engineering & Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.