Abstract

Liquid level control through regulation of mass flow rates is an important application in various areas of the power industry. Very often a PID controller is used for these applications. This paper compares a nonconventional PID controller and three different types of adaptive controller, a direct model reference adaptive controller (MRAC), an indirect MRAC with Lyapunov estimation, and an indirect MRAC with recursive least-squares (RLS) updating estimation, for liquid level control. By implementing all four controllers on a three-tank system, the performances of each are compared. All controllers track a sinusoidal input very well and overall exhibit somewhat varying performance. The direct MRAC and the indirect MRAC with RLS estimation give the best performance. With Lyapunov estimation and RLS estimation, all the system parameter estimates converge to the reference model values. However, RLS estimation has a much faster convergence. It is concluded that adaptive liquid level control is an improvement over traditional liquid level control when precise level control in three coupled tanks is desired.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call