Abstract

We describe here the development a joint mechanism for underwater robotic manipulators. Arms of underwater robots require small-scale bodies and high waterproofing properties. In most of underwater robots, electric motors are used as actuators to drive the robotic arm/arms, but using electric motors for underwater manipulators may be problematic due to the size/weight of the robotic arm and need to waterproof the electric motors. We develop a joint mechanism composed of combinations of rigid and flexible members, which can be deformed by a prismatic actuator fixed onto two rigid parts. We utilize a leaf spring as the flexible joint and a McKibben actuator driven by water hydraulic pressure as the prismatic actuator. The number of members in this mechanism is smaller than that of a mechanism composed of a combination of one pulley and one coil spring. One advantage of this mechanism is the avoidance of gears, thus eliminating sliding parts from the joint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.