Abstract

Abstract The increasing volume of scientific data and the limited scalability and performance of storage systems are currently presenting a significant limitation for the productivity of the scientific workflows running on both high-performance computing (HPC) and cloud platforms. Clearly needed is better integration of storage systems and workflow engines to address this problem. This paper presents and evaluates a novel solution that leverages codesign principles for integrating Hercules—an in-memory data store—with a workflow management system. We consider four main aspects: workflow representation, task scheduling, task placement, and task termination. The experimental evaluation on both cloud and HPC systems demonstrates significant performance and scalability improvements over existing state-of-the-art approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.