Abstract

Thermal conductivity of EG based hybrid nanofluid containing ZnO-DWCNT nanoparticles was investigated experimentally at concentration of 0.045 to 1.9% and a temperature of 30–50 °C. ZnO particles (with an average diameter of 10–30 nm) and double wall carbon nanotubes (DWCNT) (internal diameter of 3–5 nm and 5–15 nm external diameter) were mix at a ratio of 90%: 10% and dispersed in ethylene glycol (EG) then its thermal conductivity was measured. The results showed that maximum relative thermal conductivity (TCR) at temperature of 50 °C and the concentration of 1.9%, equivalent to 24.9%. Economic evaluation and qualitative performance showed that nanofluids hybrid compared with ZnO and nanofluids containing MWCNT, in terms of increasing thermal conductivity (TCE) and economically, is quite effective. A new correlation to predict TCR in terms of concentration of nanoparticles and the temperature was proposed. This correlation has a coefficient of determination (R-squared) and the maximum error of 0.9826 and 2.9%, respectively. The greatest sensitivity was calculated at a maximum temperature and solid volume fraction. Based on the TCR data the artificial neural network (ANN) was developed. The best case ANN containing two hidden layer and 3 neurons in each layer was obtained. This ANN has an R-squared and MSE and was equal to 0.9966% AARD and 1.3127e-05 and 0.0489, respectively. The comparison between experimetnal data, correlation and ANN outputs shows the accuracy and capability of ANN in modeling the TCR data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.