Abstract

A Chemical-Looping Combustion (CLC) system is composed of two fluidized bed reactors, an air reactor and a fuel reactor. Oxygen is transferred from the air to the fuel by solid oxygen carrier particles circulating between these two reactors. By this arrangement, the N2 from the air is kept separated from the fuel gases as a part of the process and an almost pure stream of CO2 is obtained from the fuel reactor.This work investigates and models the influence of the steam and hydrogen concentration in the fuel reactor on the rate of solid fuel conversion in Chemical-Looping Combustion. Two kinds of fuel were examined, Swedish wood char and El Cerrejon bituminous coal (Colombian coal). Four different bed materials have been used in the reactor, ilmenite, nickel and oxide scales as an oxygen carrier and quartz sand for gasification experiments. The temperature was 970°C for all experiments. Different fractions of steam and hydrogen were added to the fluidizing stream. Additionally, gasification experiments of fuel particles pretreated in mixtures of H2 and N2 were performed in order to determine the reversibility of the observed hydrogen inhibition.The results show that the best models for describing the behavior of steam gasification and fuel conversion in Chemical-Looping Combustion for a Swedish wood char and the El Cerrejon coal is the oxygen exchange model. For both fuels, it can be seen that higher steam concentration increases the rate of char conversion and, higher hydrogen concentration decreases the rate as a result of hydrogen inhibition. No irreversible hydrogen inhibition could be observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.