Abstract

In this study, an SO3 measurement technique was evaluated and developed. In the method, a salt is used to capture gaseous SO3/H2SO4. Various salts were tested to evaluate the suitability to measure SO3/H2SO4 without interference from SO2. Salts tested include NaCl, KCl, K2CO3, and CaCl2. The salts were tightly packed into a Teflon tube, and the gas was fed through the salt tube with subsequent reaction between SO3/H2SO4 and the salt with formation of sulfates of the respective salt. After the measurement, the salt was dissolved in water, and the solution was analyzed for sulfate ions. The SO3/H2SO4 concentration in the flue gas could then be determined because the gas volume flowing through the salt was measured together with the amount of sulfate bound in the salt. The method was tested in laboratory conditions, in a 100 kWth test unit during air-firing and oxy-fuel combustion, and in an industrial boiler. A first attempt to continuously measure SO3/H2SO4 indirectly with an FTIR, by measuring the release of HCl in the sulfation of KCl, was also made. The conversion of SO3 to H2SO4 in flue gas conditions is discussed. It was found that at the measurement conditions almost all SO3 is present as H2SO4. Therefore, the laboratory study was made with gaseous H2SO4 instead of SO3. The laboratory tests showed that all salts captured all H2SO4. The best selectivity toward H2SO4 was shown for NaCl and KCl; no significant amount of SO2 was captured in these salts. An in situ implementation of the salt method using KCl as salt was used during heavy oil combustion in a Kraft recovery boiler. The salt method showed to be an accurate, inexpensive, and easy way to measure SO3/H2SO4 in flue gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.