Abstract
Our proposed “matrix-type” semiconductor detectors are applied for studying the local energy balance of bulk electrons in the tandem-mirror GAMMA 10. The matrix-type detector array consists of compactly produced six “rows” having different thicknesses of thin dead layers (SiO2) on its surface. Each row has seven channel units (“columns”) for measuring radiation profiles in the radial direction of plasmas. These various SiO2 layers are, thus, employed as “unbreakable ultrathin radiation-absorption filters” having various thicknesses to distinguish x rays from charge-exchange neutral particles and analyze the radial profiles of both plasma ion and electron temperatures simultaneously. The radial profiles of the energy confinement time and the thermal diffusivity obtained from the local energy balance analysis imply that the improvement of the plasma confinement is associated with the strong shear of radial electric fields due to a high plasma confining potentials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.