Abstract
AbstractIn recent years, we have investigated gas‐transport phenomena in coextruded linear low‐density polyethylene (LLDPE) membranes. For the most part, coextruded LLDPE membranes were investigated because of their excellent mechanical properties, which explain their extensive use in the packaging industry. Because of the small thickness of coextruded LLDPE membranes, significant errors can be involved in the determination of the diffusion coefficient of gases in the membranes by the time‐lag method. To obtain more precise transport parameters for LLDPE membranes, we determined the permeability and diffusion coefficients for O2, CO2, He, and N2 from 298 to 348 K by employing an alternative method recently developed. The results indicate that the procedure used in this study for determining the diffusivity of gases in membranes was precise and more efficient than a method based on the evaluation of the time‐lag parameter. With respect to permeability, the coefficients obtained in this work agree satisfactorily with those obtained by the time‐lag method. In general, the permeability and diffusivity results are in satisfactory agreement with the literature values reported for semicrystalline polyethylene membranes. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3013–3021, 2001
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.