Abstract
As it promises more precise and conformal radiation treatments, magnetic resonance imaging-integrated proton therapy (MRiPT) is seen as a next step in image guidance for proton therapy. The Lorentz force, which affects the course of the proton pencil beams, presents a problem for beam delivery in the presence of a magneticfield. To investigate the influence of the 0.32-T perpendicular magnetic field of an MR scanner on the delivery of proton pencil beams inside an MRiPT prototypesystem. An MRiPT prototype comprising of a horizontal pencil beam scanning beam line and an open 0.32-T MR scanner was used to evaluate the impact of the vertical magnetic field on proton beam deflection and dose spot pattern deformation. Three different proton energies (100, 150, and 220 MeV) and two spot map sizes (15 × 15 and 30 × 20 cm2 ) at four locations along the beam path without and with magnetic field were measured. Pencil-beam dose spots were measured using EBT3 films and a 2D scintillation detector. To study the magnetic field effects, a 2D Gaussian fit was applied to each individual dose spot to determine the central position , minimum and maximum lateral standard deviation ( and ), orientation (θ), and the eccentricity (ε). The dose spots were subjected to three simultaneous effects: (a) lateral horizontal beam deflection, (b) asymmetric trapezoidal deformation of the dose spot pattern, and (c) deformation and rotation of individual dose spots. The strongest effects were observed at a proton energy of 100 MeV with a horizontal beam deflection of 14-186 mm along the beam path. Within the central imaging field of the MR scanner, the maximum relative dose spot size decreased by up to 3.66%, while increased by a maximum of 2.15%. The largest decrease and increase in the eccentricity of the dose spots were 0.08 and 0.02, respectively. The spot orientation θ was rotated by a maximum of 5.39°. At the higher proton energies, the same effects were still seen, although to a lesserdegree. The effect of an MRiPT prototype's magnetic field on the proton beam path, dose spot pattern, and dose spot form has been measured for the first time. The findings show that the impact of the MF must be appropriately recognized in a future MRiPT treatment planning system. The results emphasize the need for additional research (e.g., effect of magnetic field on proton beams with range shifters and impact of MR imaging sequences) before MRiPT applications can be employed to treat patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.