Abstract

Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) produce lifelong infections and are highly prevalent in the human population. Both viruses elicit numerous clinical manifestations and produce mild-to-severe diseases that affect the skin, eyes, and brain, among others. Despite the existence of numerous antivirals against HSV, such as acyclovir and acyclovir-related analogs, virus variants that are resistant to these compounds can be isolated from immunosuppressed individuals. For such isolates, second-line drugs can be used, yet they frequently produce adverse side effects. Furthermore, topical antivirals for treating cutaneous HSV infections usually display poor to moderate efficacy. Hence, better or novel anti-HSV antivirals are needed and details on their mechanisms of action would be insightful for improving their efficacy and identifying specific molecular targets. Here, we review and dissect the lytic replication cycles of herpes simplex viruses, discussing key steps involved in cell infection and the processes that yield new virions. Additionally, we review and discuss rapid, easy-to-perform and simple experimental approaches for studying key steps involved in HSV replication to facilitate the identification of the mechanisms of action of anti-HSV compounds.

Highlights

  • Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) are two Alphaherpesvirinae viruses that are highly prevalent in the human population and are known to produce numerous clinical manifestations after the infection of different tissues within the host

  • The current review focuses on the lytic replication cycles of HSVs and antivirals that block their related processes, it is important to note that novel therapeutic strategies are being developed to attack these viruses in the latent phases

  • The number of copies of viral genomes associated to the cell with in the supernatants can be quantified by qPCR to assess whether differences occur over the adhesion of HSVs to the cell surface in the presence of a candidate antiviral drug and a known amount of virus added to the culture (Figure 4A) (Dai et al, 2018)

Read more

Summary

Introduction

Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) are two Alphaherpesvirinae viruses that are highly prevalent in the human population and are known to produce numerous clinical manifestations after the infection of different tissues within the host. The number of copies of viral genomes associated to the cell (bound) with in the supernatants (unbound) can be quantified by qPCR to assess whether differences occur over the adhesion of HSVs to the cell surface in the presence of a candidate antiviral drug and a known amount of virus added to the culture (Figure 4A) (Dai et al, 2018).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.