Abstract
This work focuses on the local heat fluxes on a disc during braking conditions. The generated heat and the temperature field are identified using an inverse heat conduction method coupled to temperature measurements inside the disc. Function specification is used to estimate the boundary conditions in the model without any prior information on the flux intensity and the evolution regarding the time and the position on the sliding surface. Disc heat flux identifications are performed for different braking conditions (sliding speed and normal pressure) on a High-Speed Tribometer. The temperature values are obtained using a telemetry system that allows inductive data transfer. The influence of the braking conditions on the heat repartition and the surface temperature is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.