Abstract

Composites trend to failure in their defects, which are randomly distribuited. This causes that the tensile strength decreases when the volumen of material tested increases. This fenomenon is known as size effect or volume effect. Knowing the value of the Weibull parameters is key for modeling and the correct design of large components. In this work, one tensile test are proposed, named the fragmentation test to obtain the shape and scale Weibull parameters that are validated with the scaled test. Carbon/glass hybrid composites can exhibit pseudo-ductile response in the stress-strain curves by having a part with small slope or plateau. The specimen design promotes fragmentation or gradual fracture of carbon layer and suppresses unstable delamination at the plateau. The facture events have been identified by video and accoustic emission monitoring in 11 specimens. The data of fracture strain has been adjusted to the Weibull distribution following the proposed iterative process. The process has been validated using previous results of Finite Elements. The volumen effect has been validated with the results of series of tensile tests, with dimensions scaled by factors of 2,4 and 8 in each direction. Another important advantage of hybridization is the suppression of the stress concentration in the carbon layer, which makes simple end-tab free specimens feasible. The results of two tests have been compared, obtaining very close values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call