Abstract

In aluminum electrolysis cells, a ledge of frozen electrolyte is formed on the sides. Controlling the side ledge thickness (a few centimeters) is essential to maintain a reasonable life span of the electrolysis cell, as the ledge acts as a protective layer against chemical attacks from the electrolyte bath used to dissolve alumina. The numerical modeling of the side ledge thickness, by using, for example, finite element analysis, requires some input data on the thermal transport properties of the side ledge. Unfortunately, there is a severe lack of experimental data, in particular, for the main constituent of the side ledge, the cryolite (Na3AlF6). The aim of this study is twofold. First, the thermal transport properties of cryolite, not available in the literature, were measured experimentally. Second, the experimental data were compared with previous theoretical predictions based on first principle calculations. This was carried out to evaluate the capability of first principle methods in predicting the thermal transport properties of complex insulating materials. The thermal diffusivity of a porous synthetic cryolite sample containing 0.9 wt % of alumina was measured over a wide range of temperature (473–810 K), using the monotone heating method. Because of limited computational resources, the first principle method can be used only to determine the thermal properties of single crystals. The dependence of thermal diffusivity of the Na3AlF6 + 0.9 wt % Al2O3 mixture on the microstructural parameters is discussed. A simple analytical function describing both thermal diffusivity and thermal conductivity of cryolite as a function of temperature is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.