Abstract
In the recent past (PVP2013-97677, PVP2014-28197, PVP2015-45286, PVP2016-63223) we had started to determine the static equivalent pressures (pstat) of the eight detonative pressure scenarios in long and short pipes for different detonable gas mixtures. The pstat-values are of vital importance for process design: by assigning static equivalent pressures to the highly dynamic detonative pressure peaks it is possible to apply the established pressure vessel guidelines, which can only cope with static loads, in the design of detonation pressure resistant pipes. In the previous publications the parameter R was defined as the ratio between pstat at the location where transition from deflagration to detonation occurs and pstat in the region of the stable detonation. One important finding was that R depends on the reactivity of the gas mixture. So far, R cannot be predicted from first principles or from combustion parameters, but can only be determined experimentally. The ratio R has a special significance, because it not only determines pstat for the Deflagration to Detonation Transition (DDT) in long pipes (first detonative pressure scenario), but also gives a good estimate for two of the three scenarios relevant in the design of short pipes: DDT and the coalescence of DDT and reflection. The present paper concludes the test series conducted at BASF during the last 4 years. It presents additional experimental data showing the variation of R over the entire detonative range of Ethylene/O2/N2 mixtures and along the stoichiometric line of Cyclohexane/O2/N2 mixtures. Based on the variation of R for these ternary mixtures and for the mixtures presented in the preceding publications, a typical variation of R for a general combustible/O2/N2-mixture is estimated over the entire explosive range. By means of this estimation the static equivalent pressures of the six design-relevant detonative pressure scenarios of any combustible/O2/N2-mixture can now be derived combining the parameter R with the Chapman-Jouguet pressure ratio, which can be calculated in a straightforward manner from thermodynamic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.