Abstract
Helical-shaped magnetotactic bacteria provide a rare opportunity to precisely measure both the translational and rotational friction coefficients of micron-sized chiral particles. The possibility to align these cells with a uniform magnetic field allows clearly separating diffusion along and perpendicular to their longitudinal axis. Meanwhile, their corkscrew shape allows detecting rotations around their longitudinal axis, after which orientation correlation analysis can be used to retrieve rotational diffusion coefficients in the two principal directions. Using light microscopy, we measured the four principal friction coefficients of deflagellated Magnetospirillum magneticum cells, and compared our results to that expected for cylinders of comparable size. We show that for rotational motions, the overall dimensions of the cell body are what matters most, while the exact body shape has a larger influence on translational motions. To obtain a full characterization of the friction matrix of these elongated chiral particles, we also quantified the coupling between the rotation around and translation along the longitudinal axis of the cell. Our results suggest that for this bacterial species cell body rotation could significantly contribute to cellular propulsion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.