Abstract

Integral structures offer large benefits in terms of manufacturing cost, but suffer from a lower degree of fail safety when compared to built-up structures. In order to achieve an improvement on the fatigue crack propagation (FCP), crack containment features (also known as crenellations) have been used on these structures. The source of the FCP improvement is the stress intensity factor (K) modification due to the geometry change. In the current study, an analysis about means of estimating K from the experimental information, and also to verify the K behavior while the crack propagates was performed. The study tested two AA 7475 panels, one with crenellations and another without. As the crack propagates, the K values were estimated in two forms, based on the crack propagation rate and by using a digital image correlation (DIC) system, coupled with strain gages. Based on DIC system, it was possible to evaluate the K estimation, the singularity dominated zone size and the K increase, as long as the crack propagated, for both test specimens. A comparison between the two methods was also made, and finally the use of a DIC system as a tool for estimating the K parameter was discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.