Abstract
The energy gap of simple band insulators like GaAs is a strong function of temperature due to the electron–phonon interactions. Interestingly, the perturbation from zero-point phonons is also predicted to cause significant (a few percent) renormalization of the energy gap at absolute zero temperature but its value has been difficult to estimate both theoretically and, of course, experimentally. Given the experimental evidence (Bhattacharya et al 2015 Phys. Rev. Lett. 114 047402) that strongly supports that the exponential broadening (Urbach tail) of the excitonic absorption edge at low temperatures is the manifestation of this zero temperature electron–phonon scattering, we argue that the location of the Urbach focus is the zero temperature unrenormalized gap. Experiments on GaAs yield the zero temperature bare energy gap to be 1.581 eV and thus the renormalization is estimated to be 66 meV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.