Abstract

The equilbrated grain boundary groove shapes for the Zn solid solution in equilibrium with the Zn-Al eutectic liquid were observed by rapid quenching. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient and the solid-liquid interfacial energy for the Zn solid solution in equilibrium with the Zn-Al eutectic liquid have been determined to be (5.80±0.18) × 10−8 Km and (93.496±7.57) × 10−3 Jm−2 with the numerical method and from the Gibbs-Thomson equation, respectively. The grain boundary energy for the same material has been calculated to be (182.302±18.23)×10−3 Jm−2 from the observed grain boundary groove shapes. The thermal conductivities of the solid and liquid phases for Zn-5 wt pct Al and Zn-0.5 wt pct Al alloys have also been measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.