Abstract

This work evaluates experimentally the dose enhancement factor (DEF) and dose sparing factor (DSF) due to radiation self-shielding, produced by Gd infused in tumor phantom irradiated with brachytherapy HDR 192Ir source by Gafchromic EBT3 dosimeter. The phantom was made of a set of solid water slabs (30 × 30 × 1.0) cm3 and three acrylic slabs of (30 × 30 × 0.5) cm3 machined to contain in the central axis acrylics vials of (1 × 1 × 5) cm3. The first and second acrylic vials were filled with an identical Gd solution of 0, 10 and 20 mg/ml, simulating Gd-doped and undoped tumor, and the third vial was filled in all the measurement only with water, representing an organ at risk. Additional solid water slabs were used to complete a phantom of (30 × 30 × 16) cm3. In the phantom center an acrylic slab was machined to introduce the 2.5 mm flexible guide tube of GammaMed plus iX equipment and positioning the 192Ir source in the phantom central part. EBT3 fragments of (0.9 × 4) cm2 were placed on the inner edge of the second and third vials to measure dose enhancement and dose sparing simultaneously. Phantom CT images were acquired for planning and to prescribe a dose of 6.0 Gy at 2.0 cm of the source, achieving an isodose curve of 44.5% at 3.0 cm (positions of the EBT3 films). Additionally, Monte Carlo simulation of the identical experimental setup was implemented to compare measurement values. The results showed the feasibility of measuring a DEF of 1.15 ± 0.05 in 20 mg/ml of Gd concentration consistent with the Monte Carlo DEF of 1.112 ± 0.005 for the same concentration. DEF value for concentration of 10 mg/ml would not be detected (1.00 ± 0.04) by an expected under measurement of the EBT3 films associated with the non-detection of photoelectrons and Auger electrons of very low energy that cannot reach the radiosensitive substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call