Abstract
The effects of aging on the cyclic shear stress–strain and fatigue behavior of lead-free solders have been explored experimentally and have been presented in this paper. An experimental procedure has been developed for preparing Iosipescu shear specimens of SAC105 (Sn–1.0Ag–0.5Cu) lead-free solder, and the resulting solder joint specimens have been subjected to cyclic shear stress/strain loading at different aging conditions. A combination of four-parameter hyperbolic tangent empirical models has been used for the empirical fit of the entire cyclic stress strain curve. The fatigue life data were then fit using popular empirical failure criteria such as the strain-based Coffin–Manson model and the energy-based Morrow model. Evolution of shear hysteresis loop of SAC 105 with aging has been studied. Degradation of isothermal fatigue life due to aging has also been studied in this paper. A comparison between uniaxial fatigue data and shear fatigue data is shown and a good qualitative agreement has been found. Subsequent microstructure analysis has also been presented in the paper in support of isothermal aging effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.