Abstract

Globally, depleting non-renewable energy resources and environmental pollution are significant challenges. Much research is ongoing on perovskite coatings as a potential replacement. In this work, potassium sodium niobate (KNN) ceramics are fabricated by solid-state method, calcined at ∼850 °C, and electrophoreticcally deposited (EPD) on Ni-substrate uniquely then, sintered at high temperatures ∼1070–1120 °C. The X-ray diffraction and FTIR confirmed the development of a pure KNN perovskite structure and metallic bond groups (-O-Nb-O) present respectively. An increase in the sintering temperature resulted in the pronounced peaks observed in KNN ceramics, confirmed by Raman spectroscopy, and easily observed in SEM having “square” and “circular” morphology with grain growth. The coating thickness was measured around 18–116 μm and increasing deposition rate (0.084–0.337 μm/s) was calculated. The coating roughness (∼813 nm) was confirmed by atomic force microscopy. Complex impedance spectroscopic (CIS) analysis confirmed the high dielectric constant (∼4789) with a high transformation and curie temperature (TO→T ∼ 280 °C & TC ∼ 480 °C), respectively. The increasing conductivity (≥830 μS/m) at higher frequency and temperatures agree with the hopping conduction mechanism which confirmed the negative temperature coefficient of resistance (NTCR). The work holds great significance in sensors, actuators, spintronics, and energy harvesting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.