Abstract

Absorbed doses determined with a sealed water calorimeter operated at 4 °C are compared with the results obtained using ionization chambers and the IAEA TRS-398 code of practice in a 10 MV photon beam (TPR20,10 = 0.734) and a 175 MeV proton beam (at a depth corresponding to the residual range, Rres = 14.7 cm). Three NE 2571 and two FC65-G ionization chambers were calibrated in terms of absorbed-dose-to-water in 60Co at the Swedish secondary standard dosimetry laboratory, directly traceable to the BIPM. In the photon beam quality, calorimetry was found to agree with ionometry within 0.3%, confirming the kQ values tabulated in TRS-398. In contrast, a 1.8% deviation was found in the proton beam at 6 g cm−2 depth, suggesting that the TRS-398 tabulated kQ values for these two ionization chamber types are too high. Assuming no perturbation effect in the proton beam for the ionization chambers, a value for (wair/e)Q of 33.6 J C−1 ± 1.7% (k = 1) can be derived from these measurements. An analytical evaluation of the effect from non-elastic nuclear interactions in the ionization chamber wall indicates a perturbation effect of 0.6%. Including this estimated result in the proton beam would increase the determined (wair/e)Q value by the same amount.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.