Abstract

The aim of this work is to experimentally determine and evaluate the value of the correction factor for ultrasonic flow meters in order to improve their accuracy. This article concerns flow velocity measurement with the use of an ultrasonic flow meter in the area of disturbed flow behind the distorting element. Clamp-on ultrasonic flow meters are popular among measurement technologies due to their high accuracy and easy, non-invasive installation, because the sensors are mounted directly on the outer surface of the pipe. In industrial applications, installation space is usually limited and, therefore, flow meters frequently have to be mounted directly behind flow disturbances. In such cases, it is necessary to determine the value of the correction factor. The disturbing element was a knife gate valve, a valve often used in flow installations. Water flow velocity tests were performed using an ultrasonic flow meter with clamp-on sensors on the pipeline. The research was performed in 2 series of measurements with different Reynolds numbers of 35,000 and 70,000, which correspond to a velocity of approximately 0.9 m/s and 1.8 m/s. The tests were carried out at different distances from the source of interference, within the range of 3–15 DN (pipe nominal diameter). The position of the sensors at successive measurement points on the circuit of the pipeline was changed by 30 degrees. Flow velocity measurements were carried out for two different levels of the valve’s closure: 1/3 and 1/2 of the valve’s height. For the collected velocity values at single measurement points, the values of the correction coefficient, K, were determined. The results of the tests and calculations prove that compensation error of measurement performed behind the disturbance without keeping the required straight sections of the pipeline is possible by using the factor K*. The analysis of the results made it possible to identify the optimal measuring point at a distance from the knife gate valve as being smaller than specified in the standards and recommendations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call